After I installed the web-based Terminal on my Omega2, I was able to login to the terminal via web-browser. Cool!
Thursday, June 22, 2017
Tuesday, June 20, 2017
Tuesday, June 13, 2017
Interesting opinions About Job Interviews
I one day stumbled upon this site (Things I Learned From Failing Technical Interviews), a section called "Do not be Yourself" intrigued me.
Contrary to the popular suggestions from many career advisers to be yourself during job interview, the person suggests the interviewee not to be him/herself, but to be a robot. I totally agree with his opinion. If you've done multiple job interviews for software engineer job position, you might have experienced some unease when the interviewer expects you to be perfect in coding in front of him/her. No syntax errors, have to memorize the APIs, etc. The blogger continues to say that hiring a candidate is just like another upgrade of server or adding another PC in the server cluster, which is to offload work from the team to the new hired.
It is almost a guarantee that you will be asked something you don't know and even an hour of thinking about it and problem solving around it you still won't know. Sometimes you get asked something you've known it long time ago, but can no longer able to recall, grasp it and/or explain it to them clearly. You feel like you're an idiot with glamorous titles and said experiences (and preconceive that the interviewer must say in his mind, "why the heck this guy is applying for this position", or "Oh boy, another fake"?)
Another job-seeking-related blog: I will get That Job at Google
Contrary to the popular suggestions from many career advisers to be yourself during job interview, the person suggests the interviewee not to be him/herself, but to be a robot. I totally agree with his opinion. If you've done multiple job interviews for software engineer job position, you might have experienced some unease when the interviewer expects you to be perfect in coding in front of him/her. No syntax errors, have to memorize the APIs, etc. The blogger continues to say that hiring a candidate is just like another upgrade of server or adding another PC in the server cluster, which is to offload work from the team to the new hired.
It is almost a guarantee that you will be asked something you don't know and even an hour of thinking about it and problem solving around it you still won't know. Sometimes you get asked something you've known it long time ago, but can no longer able to recall, grasp it and/or explain it to them clearly. You feel like you're an idiot with glamorous titles and said experiences (and preconceive that the interviewer must say in his mind, "why the heck this guy is applying for this position", or "Oh boy, another fake"?)
Another job-seeking-related blog: I will get That Job at Google
Wednesday, June 7, 2017
Swamping two variables without temporary variable
Based on the Boolean Algebra, where XOR operator is commutative and associative:
A = A ⊕ B
B = B ⊕ A = B ⊕ (A ⊕ B) = B ⊕ (B ⊕ A) = (B ⊕ B) ⊕ A
= 0 ⊕ A = A
A = A ⊕ B = (A ⊕ B) ⊕ A = B ⊕ (A ⊕ A) = B
So the steps are:
A = A^B;
B = B^A;
A = A^B;
Another way is by doing arithmetics:
A = A - B;
B = A + B;
A = B - A;
Or
A = A + B;
B = A - B;
A = A - B;
If we look at carefully, the XOR operator is actually a half-adder operation (with carry bit).
A ⊕ B = A' * B + A * B', where if A=1 the result would be equal to B', else equal to B.
Tuesday, May 23, 2017
Bits Reversal - Advanced
Suppose we have 16-bit number where we want to reverse some bits between bits i'th and j'th. To illustrate that, say we have a 16-bit value stored in v:
|<-------- L = sizeof(short)*CHAR_BIT --------->|
15 7 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | x| x| x| x| x| x| x| | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
^ ^
| |
i=12 j=6
|<------>|
L - i - 1
So, we want to reverse bits between bits 6th to 12th.
Assume i is always greater than j (i > j):
Number of bits to reverse: n = (i - j) + 1
Mask to use: (2^n - 1) << j
Or, in the case above:
n = (12 - 6) + 1 = 7
mask = (2^7 - 1) << 6 = 127 << 6 = 0x1FC0 (0001111111000000 in binary)
Then we mask the bits stored in v and shift it back to 0 (to do reverse operation):
r = (v & mask) >> j;
r =
15 7 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| 0| 0| 0| 0| 0| 0| 0| 0| x| x| x| x| x| x| x|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
We use bit reversal operation as posted previously on r:
r = bit_reversal(r);
After this call, the bits are reversed, but filled in from MSB. We need to put them to the position originally started.
15 7 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| x| x| x| x| x| x| x| | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|-------> shr 3
<========= sizeof(unsigned int)* CHAR_BIT ======>
m = sizeof(short) * CHAR_BIT - n - j
m = 2*8 - 7 -6 = 16 - 13 = 3
Final result is:
(v & !mask) | ((r >> m) & mask);
|<-------- L = sizeof(short)*CHAR_BIT --------->|
15 7 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | x| x| x| x| x| x| x| | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
^ ^
| |
i=12 j=6
|<------>|
L - i - 1
So, we want to reverse bits between bits 6th to 12th.
Assume i is always greater than j (i > j):
Number of bits to reverse: n = (i - j) + 1
Mask to use: (2^n - 1) << j
Or, in the case above:
n = (12 - 6) + 1 = 7
mask = (2^7 - 1) << 6 = 127 << 6 = 0x1FC0 (0001111111000000 in binary)
Then we mask the bits stored in v and shift it back to 0 (to do reverse operation):
r = (v & mask) >> j;
r =
15 7 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| 0| 0| 0| 0| 0| 0| 0| 0| x| x| x| x| x| x| x|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
We use bit reversal operation as posted previously on r:
r = bit_reversal(r);
After this call, the bits are reversed, but filled in from MSB. We need to put them to the position originally started.
15 7 1 0
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| x| x| x| x| x| x| x| | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|-------> shr 3
<========= sizeof(unsigned int)* CHAR_BIT ======>
m = sizeof(short) * CHAR_BIT - n - j
m = 2*8 - 7 -6 = 16 - 13 = 3
Final result is:
(v & !mask) | ((r >> m) & mask);
Bit Reversal - Explained
The page Bit Twiddling Hacks shows how to reverse bits in an integer (e.g, reverse LSB with MSB bits or reading bits from the opposite direction), but seems it doesn't explain anything why that works.
Here I try to explain it step by step. Let start with a 8-bit char first. Assume each letter in ABCDEFGH represents each bits in the char (e.g, A is for MSB etc.).
x = ABCDEFGH
ABCDEFGH
10101010 (or 0xAA)
-------- &
A0C0E0G0 ---- >> 1 : 0A0C0E0G
ABCDEFGH
01010101 (or 0x55)
-------- &
0B0D0F0H ---- << 1 : B0D0F0H0
0A0C0E0G
B0D0F0H0
-------- |
BADCFEHG ---> stored as a new x, then we do next operation
BADCFEHG
11001100 (or 0xCC)
--------- &
BA00FE00 ---- >> 2: 00BA00FE
BADCFEHG
00110011 (or 0x33)
--------- &
00DC00HG ---- << 2: DC00HG00
00BA00FE
DC00HG00
-------- |
DCBAHGFE
Last, we operate the similar thing on the high and low nibbes:
DCBAHGFE
11110000 (or 0xF0)
-------- &
DCBA0000 ==> >> 4 = 0000DCBA
DCBAHGFE
00001111 (or 0x0F)
-------- &
0000HGFE ==> << 4 = HGFE0000
0000DCBA
HGFE0000
--------|
HGFEDCBA
Finally, we now get HGFEDCBA which is the reversed bits of ABCDEFGH! To summarize, to reverse bits in an octet, we do operations:
x = (x & 0xAA >> 1) | (x & 0x55 << 1);
x = (x & 0xCC >> 2) | (x & 0x33 << 2);
x = (x & 0xF0 >> 4) | (x & 0x0F >> 4);
For operation on 32-bit data, we do the similar one, except we do with 32-bit mask (instead of 10101010 binary or 0xAA, we mask with 0xAAAAAAAA) plus extra two pair of masks (0xF0F0F0F0 and 0x0F0F0F0F, 0xFF00FF00 and 0x00FF00FF) with shift left/right 4, 8 and 16 bit.
So, bit-reversal computation or algorithm for 32-bit integer:
unsigned int reverse_bits(unsigned int x)
{
x = ((x & 0xA0A0A0A0) >> 1) | ((x & 0x05050505) << 1);
x = ((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2);
Here I try to explain it step by step. Let start with a 8-bit char first. Assume each letter in ABCDEFGH represents each bits in the char (e.g, A is for MSB etc.).
x = ABCDEFGH
ABCDEFGH
10101010 (or 0xAA)
-------- &
A0C0E0G0 ---- >> 1 : 0A0C0E0G
ABCDEFGH
01010101 (or 0x55)
-------- &
0B0D0F0H ---- << 1 : B0D0F0H0
0A0C0E0G
B0D0F0H0
-------- |
BADCFEHG ---> stored as a new x, then we do next operation
BADCFEHG
11001100 (or 0xCC)
--------- &
BA00FE00 ---- >> 2: 00BA00FE
BADCFEHG
00110011 (or 0x33)
--------- &
00DC00HG ---- << 2: DC00HG00
00BA00FE
DC00HG00
-------- |
DCBAHGFE
Last, we operate the similar thing on the high and low nibbes:
DCBAHGFE
11110000 (or 0xF0)
-------- &
DCBA0000 ==> >> 4 = 0000DCBA
DCBAHGFE
00001111 (or 0x0F)
-------- &
0000HGFE ==> << 4 = HGFE0000
0000DCBA
HGFE0000
--------|
HGFEDCBA
Finally, we now get HGFEDCBA which is the reversed bits of ABCDEFGH! To summarize, to reverse bits in an octet, we do operations:
x = (x & 0xAA >> 1) | (x & 0x55 << 1);
x = (x & 0xCC >> 2) | (x & 0x33 << 2);
x = (x & 0xF0 >> 4) | (x & 0x0F >> 4);
For operation on 32-bit data, we do the similar one, except we do with 32-bit mask (instead of 10101010 binary or 0xAA, we mask with 0xAAAAAAAA) plus extra two pair of masks (0xF0F0F0F0 and 0x0F0F0F0F, 0xFF00FF00 and 0x00FF00FF) with shift left/right 4, 8 and 16 bit.
So, bit-reversal computation or algorithm for 32-bit integer:
unsigned int reverse_bits(unsigned int x)
{
x = ((x & 0xA0A0A0A0) >> 1) | ((x & 0x05050505) << 1);
x = ((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2);
x = ((x & 0x0F0F0F0F) >> 4) | ((x & 0xF0F0F0F0) << 4);
x = ((x & 0xFF00FF00) >> 8) | ((x & 0x00FF00FF) << 8);
return (x >> 16) | (x << 16);
x = ((x & 0xFF00FF00) >> 8) | ((x & 0x00FF00FF) << 8);
return (x >> 16) | (x << 16);
}
Subscribe to:
Posts (Atom)