Tuesday, January 15, 2019

Fast String Reversal

Prime Number checking of Fibonacci sequence Number

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// (c) 2019, Lutfi Shihab


#include <iostream>
#include <vector>
// todo
template <typename T>
class Matrix
{
public:
    Matrix(int rows, int cols) : m_rows(rows), m_cols(cols) {}
    
private:
    int m_rows;
    int m_cols;
};

 
/* function that returns nth Fibonacci number */
template <typename T>
class Fibonacci
{
public:
    Fibonacci(T n) { m_fibNum = fib(n); }
    operator T() const { return m_fibNum; }
    operator int() const { return m_fibNum; }
    
    friend std::ostream& operator<<(std::ostream& os, Fibonacci<T>&  f)
    {
        return os << f.m_fibNum;
    }
    
    Fibonacci<T> operator+=(int k) { return m_fibNum += k; }
    Fibonacci<T> operator %(int k) { return m_fibNum % k; }
    Fibonacci<T> operator /(int k) { return m_fibNum / k; }
    bool         operator<=(int k) { return m_fibNum < k; }
    bool         operator >(int k) { return m_fibNum > k; }
    bool         operator==(int k) { return m_fibNum == k; }

 private:
    void multiply(T F[2][2], T M[2][2])
    {
        T x =  F[0][0]*M[0][0] + F[0][1]*M[1][0]; 
        T y =  F[0][0]*M[0][1] + F[0][1]*M[1][1]; 
        T z =  F[1][0]*M[0][0] + F[1][1]*M[1][0]; 
        T w =  F[1][0]*M[0][1] + F[1][1]*M[1][1]; 
  
        F[0][0] = x; 
        F[0][1] = y; 
        F[1][0] = z; 
        F[1][1] = w;
    }

    /* Optimized version of power() */
    void power(T F[2][2], T n)
    {

        if( n == 0 || n == 1) 
            return; 
        T M[2][2] = {{1,1},{1,0}}; 
  
        this->power(F, n/2); 
        multiply(F, F); 
  
        if (n%2 != 0) 
        multiply(F, M); 
    }

    T fib(T n) 
    { 
        T F[2][2] = {{1,1},{1,0}}; 
        if (n == 0) 
        {
            return 0;
        }
        power(F, n-1); 
  
        return F[0][0]; 
    } 


    T       m_fibNum;
};

  

// Returns n! (the factorial of n)
int Factorial(int n) 
{
    int result = 1;
    for (int i = 1; i <= n; i++) 
    {
        result *= i;
    }

    return result;
}


// Returns true if n is a prime number
template<typename T>
bool IsPrime(T n) 
{
  // Trivial case 1: small numbers
    if (n <= 1) return false;

    // Trivial case 2: even numbers
    if (n % 2 == 0) return n == 2;

    // Now, we have that n is odd and n >= 3.

    // Try to divide n by every odd number i, starting from 3
    for (T i = 3; ; i += 2) 
    {
        // We only have to try i up to the squre root of n
        if (i > n/i) break;

        // Now, we have i <= n/i < n.
        // If n is divisible by i, n is not prime.
        if (n % i == 0) return false;
    }

    // n has no integer factor in the range (1, n), and thus is prime.
    return true;
}



int main()
{
    for(int i=0; i<300; ++i)
    {
        Fibonacci<unsigned long> f(i);
        if (IsPrime(f))
        {
            std::cout << f << " is a prime number\n";
        }
    }
}